X-Ray Tests of a Pixel Array Detector for Coherent X-Ray Imaging at the Linac Coherent Light Source (LCLS)

Lucas Koerner Ljk29@cornell.edu Hugh T. Philipp, Marianne S. Hromalik, Mark W. Tate, Sol M. Gruner

Gruner Biophysics Group – Cornell University Pixel Conf. 2008 – Sept 24, 2008

Outline

- Coherent imaging experiment at LCLS
- Desired detector characteristics
- Detector approach
- X-ray tests of single ASIC detectors
 - Noise
 - Linearity
 - Spatial response
 - Radiation robustness

Coherent Imaging Experiment

- X-ray Free-Electron Laser (XFEL) at LCLS:
 - Short pulses (femtoseconds)
 - Bright (1e12 photons/pulse)

Detector Requirements

Framing Rate	120 Hz	
Pixel Saturation Value	≈1,000 (8 keV)	
Read Noise (RMS)	< 0.33 (8 keV);	
	< 730 e- ENC	
Instantaneous Hit Rate	1e17 photons/sec/pix	
Detector Format	> 500x500 pixels	
Pixel Size	~ 100 microns	
Detector Area	> 50 mm x 50 mm	
Quantum Efficiency (at 8 keV)	> 90%	
Point-Spread Function	< 1% to neighbor,	
	< 0.1 % to next neigh	nbor
Radiation Tolerance	65 Mrad (Si) at Detector Face	

Hybrid pixel detector (pixel array detector):

Two layers:

- * Fully depleted Si detector (500 μm) thick n-substrate, 5-10 kOhm-cm (*SINTEF*)
- * Connecting bump-bonds (RTI)
- * ASIC readout (0.25 micron CMOS TSMC)

Framing Rate	120 Hz
Pixel Saturation Value	≈1,000 (8 keV)
Read Noise (RMS)	< 0.33 (8 keV);
	< 730 e- ENC

Flexibility of Mixed-Mode CMOS:

- * Per pixel programmable gain
- * A-to-D in each pixel
- * FPGA readout & control

li	nstantaneous Hit Rate	1e17 photons/sec/pix

Charge Integrating not Photon Counting

- * 500 microns Si stops 99.9%
- * Spread in over-depleted sensor set by diffusion during drift (RMS 8.1 microns)

Quantum Efficiency (at 8 keV)	>90% desired. >99% expected
Point-Spread Function	< 1% to neighbor,
	< 0.1 % to next neighbor
Radiation Tolerance	65 Mrad (Si) at Detector Face

* 16 ASICs, 8 detector chips 185x194 pixels per ASIC total of 758x758 pixels

* Central Hole ___ for direct beam

38 nm virus to resolution of 0.3 nm (oversample by x2) => 500 pixels

Detector Format	758x758 pixels
Pixel Size	110 microns x 110 microns
Detector Area	83 mm x 83 mm

Pixel Schematic

FPGA Control and Acquisition

For single ASIC testing:

- * Xilinx Virtex 4 XCV100FX.
- * Communicates across PClexpress bus.
- * Handles configuration
- * Sends control signals during integration and readout
- * Control and Acquisition work separately and in parallel
- * Data from the detector buffered into FPGA block RAM and sent across PCIe bus (DMA)

16 ASIC detector:

- * (1 Gb/s) FPGA uses Scatter/Gather DMA to PC RAM
- * Requires custom disk-controller with continuous rates of 150 MB/s

Single-Chip Testing

21 mm x 21 mm chip ASIC mounted on a daughter-card

Detector vacuum cryostat: Thermoelectric cooling to -30 °C

Single-Chip Hybrids

Bump-Bonding (RTI):

18 hybrids tested

Median-connectivity:
0.99987 (5 unconnected)
Mean-connectivity:
0.99891

(one hybrid 0.987)

Dark Current:

40 fA/pix (-14 °C) 0.33 nA/cm²

700 fA/pix (18 °C) → 5 µs integration window: 21 e-6.4 nA/cm²

X-Radiograph of \$1 Bill

- * Taken using Cu K radiation (8 keV)
- * Average of eighty 1.4 second exposures
- * 10% contrast from dark to light

Single Pixel Response Histogram

High-Gain mode 8 keV radiation Single pixel exposed through 25 µm diameter pinhole

Well-Depth and Linearity

0.35 fC/x-ray and 556 fF => 630 μ V/x-ray gain. 3.3 V supply, 2 V front-end swing => ~3000 x-ray full-well 6.6 M electrons 0.15 X-ray read-noise => DR = 20,000 or 86 dB

Well-Depth and Linearity

0.35 fC/x-ray and 75 fF => 4.7 mV/x-ray gain.
3.3 V supply, 2 V front-end swing => ~400 x-ray full-well
0.9 M electrons

Spatial Response

- * Measured using knife-edge (inclined slightly from detector axis)
- * Combined with translation in few micron steps
- * Red-lines denote pixel boundary

Spatial Response

- * Gradient of edge-spread gives line-spread
- * Spreading to 5% level extends to 15 µm past pixel border

Radiation Robustness

Bare ASICs dosed to 400 kRad (Si) [electrically biased at 12 °C]:

* CMOS readout showed problems at levels of 140 kRad (Si)

Annealing:

- * room temperature anneals (40 days unbiased)
 - almost all effects vanish
- * 56 °C one-day anneal removed all residual signs of damage Damage and annealing suggest hole-trapping, possibly activating parasitic transistors through the field-oxide

Hybrids dosed to 75 Mrad (Si):

leakage currents increased, CMOS readout showed few signs of damage

Detector Leakage

* 65 kRad (Si) at pixel electrodes

$$I \propto e^{(-A/kT)}$$

slope: $\log(I) vs. 1/kT$
 $E_g(Si) = 1.12 eV$

X-ray Photon Correlation Spectroscopy

Falus, Borthwick, Mochrie, RSI (2004) **75**, 4383-4400.

Minimum correlation time: 2 ms Limited by detector read-out time.

- X-Ray photon correlation spectroscopy is used to study complex dynamics at the nanometer scale.
- How do the nanoscale interactions produce the macroscopic properties we observe?
- Systems of interest include: polymer creeping protein folding
- Nanoscale systems move *faster* than millisecond time scales!

Summary

- Integrating pixel-array detector being developed for LCLS
- 2 cm x 2 cm (194x185 pixels) detectors tested:
 - ENC of 350 e-
 - Full-well up to 6.6 M e-
 - Charge sharing region of 15 microns
 - Frame-rates of 8 ms
 - Excellent bump-bonding results

Acknowledgements

Cornell LCLS team:

Hugh Philipp, Marianne Hromalik, Mark Tate, Sol Gruner

Other Cornell Detector members:

Current: Darol Chamberlain, Kate Green,

Former: Daniel Schuette, Alper Ercan

- Stanford/SLAC/LCLS
- Funding: DOE-BES, DOE-BER
- RTI
- SINTEF
- MOSIS

END